Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 199, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347462

RESUMO

BACKGROUND: Glioblastoma (GBM) is an aggressive brain tumor that exhibits resistance to current treatment, making the identification of novel therapeutic targets essential. In this context, cellular prion protein (PrPC) stands out as a potential candidate for new therapies. Encoded by the PRNP gene, PrPC can present increased expression levels in GBM, impacting cell proliferation, growth, migration, invasion and stemness. Nevertheless, the exact molecular mechanisms through which PRNP/PrPC modulates key aspects of GBM biology remain elusive. METHODS: To elucidate the implications of PRNP/PrPC in the biology of this cancer, we analyzed publicly available RNA sequencing (RNA-seq) data of patient-derived GBMs from four independent studies. First, we ranked samples profiled by bulk RNA-seq as PRNPhigh and PRNPlow and compared their transcriptomic landscape. Then, we analyzed PRNP+ and PRNP- GBM cells profiled by single-cell RNA-seq to further understand the molecular context within which PRNP/PrPC might function in this tumor. We explored an additional proteomics dataset, applying similar comparative approaches, to corroborate our findings. RESULTS: Functional profiling revealed that vesicular dynamics signatures are strongly correlated with PRNP/PrPC levels in GBM. We found a panel of 73 genes, enriched in vesicle-related pathways, whose expression levels are increased in PRNPhigh/PRNP+ cells across all RNA-seq datasets. Vesicle-associated genes, ANXA1, RAB31, DSTN and SYPL1, were found to be upregulated in vitro in an in-house collection of patient-derived GBM. Moreover, proteome analysis of patient-derived samples reinforces the findings of enhanced vesicle biogenesis, processing and trafficking in PRNPhigh/PRNP+ GBM cells. CONCLUSIONS: Together, our findings shed light on a novel role for PrPC as a potential modulator of vesicle biology in GBM, which is pivotal for intercellular communication and cancer maintenance. We also introduce GBMdiscovery, a novel user-friendly tool that allows the investigation of specific genes in GBM biology.


Assuntos
Glioblastoma , Príons , Humanos , Expressão Gênica , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/genética , Príons/metabolismo , Proteínas rab de Ligação ao GTP/genética , Sinaptofisina/metabolismo
2.
Semin Cell Dev Biol ; 133: 32-41, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35697594

RESUMO

Extracellular vesicles (EVs) are membrane-delimited vesicular bodies carrying different molecules, classified according to their size, density, cargo, and origin. Research on this topic has been actively growing through the years, as EVs are associated with critical pathological processes such as neurodegenerative diseases and cancer. Despite that, studies exploring the physiological functions of EVs are sparse, with particular emphasis on their role in organismal development, initial cell differentiation, and morphogenesis. In this review, we explore the topic of EVs from a developmental perspective, discussing their role in the earliest cell-fate decisions and neural tissue morphogenesis. We focus on the function of EVs through development to highlight possible conserved or novel processes that can impact disease progression. Specifically, we take advantage of what was learned about their role in development so far to discuss EVs impact on glioblastoma, a particular brain tumor of stem-cell origin and poor prognosis, and how their function can be hijacked to improve current therapies.


Assuntos
Vesículas Extracelulares , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Vesículas Extracelulares/patologia , Comunicação Celular , Células-Tronco , Diferenciação Celular
3.
Front Oncol ; 10: 597743, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312955

RESUMO

Tumor cells can employ epithelial-mesenchymal transition (EMT) or autophagy in reaction to microenvironmental stress. Importantly, EMT and autophagy negatively regulate each other, are able to interconvert, and both have been shown to contribute to drug-resistance in glioblastoma (GBM). EMT has been considered one of the mechanisms that confer invasive properties to GBM cells. Autophagy, on the other hand, may show dual roles as either a GBM-promoter or GBM-suppressor, depending on microenvironmental cues. The Wingless (WNT) signaling pathway regulates a plethora of developmental and biological processes such as cellular proliferation, adhesion and motility. As such, GBM demonstrates deregulation of WNT signaling in favor of tumor initiation, proliferation and invasion. In EMT, WNT signaling promotes induction and stabilization of different EMT activators. WNT activity also represses autophagy, while nutrient deprivation induces ß-catenin degradation via autophagic machinery. Due to the importance of the WNT pathway to GBM, and the role of WNT signaling in EMT and autophagy, in this review we highlight the effects of the WNT signaling in the regulation of both processes in GBM, and discuss how the crosstalk between EMT and autophagy may ultimately affect tumor biology.

4.
Int J Mol Sci ; 21(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092231

RESUMO

The mobility of cellular prion protein (PrPC) in specific cell membrane domains and among distinct cell compartments dictates its molecular interactions and directs its cell function. PrPC works in concert with several partners to organize signaling platforms implicated in various cellular processes. The scaffold property of PrPC is able to gather a molecular repertoire to create heterogeneous membrane domains that favor endocytic events. Dynamic trafficking of PrPC through multiple pathways, in a well-orchestrated mechanism of intra and extracellular vesicular transport, defines its functional plasticity, and also assists the conversion and spreading of its infectious isoform associated with neurodegenerative diseases. In this review, we highlight how PrPC traffics across intra- and extracellular compartments and the consequences of this dynamic transport in governing cell functions and contributing to prion disease pathogenesis.


Assuntos
Doenças Neurodegenerativas/metabolismo , Proteínas PrPC/metabolismo , Doenças Priônicas/metabolismo , Transdução de Sinais , Animais , Membrana Celular/metabolismo , Humanos , Microdomínios da Membrana/metabolismo , Modelos Biológicos , Transporte Proteico
5.
Int J Mol Sci ; 21(18)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932634

RESUMO

Cell motility is a central process involved in fundamental biological phenomena during embryonic development, wound healing, immune surveillance, and cancer spreading. Cell movement is complex and dynamic and requires the coordinated activity of cytoskeletal, membrane, adhesion and extracellular proteins. Cellular prion protein (PrPC) has been implicated in distinct aspects of cell motility, including axonal growth, transendothelial migration, epithelial-mesenchymal transition, formation of lamellipodia, and tumor migration and invasion. The preferential location of PrPC on cell membrane favors its function as a pivotal molecule in cell motile phenotype, being able to serve as a scaffold protein for extracellular matrix proteins, cell surface receptors, and cytoskeletal multiprotein complexes to modulate their activities in cellular movement. Evidence points to PrPC mediating interactions of multiple key elements of cell motility at the intra- and extracellular levels, such as integrins and matrix proteins, also regulating cell adhesion molecule stability and cell adhesion cytoskeleton dynamics. Understanding the molecular mechanisms that govern cell motility is critical for tissue homeostasis, since uncontrolled cell movement results in pathological conditions such as developmental diseases and tumor dissemination. In this review, we discuss the relevant contribution of PrPC in several aspects of cell motility, unveiling new insights into both PrPC function and mechanism in a multifaceted manner either in physiological or pathological contexts.


Assuntos
Movimento Celular/fisiologia , Proteínas Priônicas/metabolismo , Animais , Adesão Celular/fisiologia , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Citoesqueleto/metabolismo , Citoesqueleto/fisiologia , Humanos
6.
Int J Mol Sci ; 20(22)2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752169

RESUMO

Heat shock proteins (HSPs) are evolutionary conserved proteins that work as molecular chaperones and perform broad and crucial roles in proteostasis, an important process to preserve the integrity of proteins in different cell types, in health and disease. Their function in cancer is an important aspect to be considered for a better understanding of disease development and progression. Glioblastoma (GBM) is the most frequent and lethal brain cancer, with no effective therapies. In recent years, HSPs have been considered as possible targets for GBM therapy due their importance in different mechanisms that govern GBM malignance. In this review, we address current evidence on the role of several HSPs in the biology of GBMs, and how these molecules have been considered in different treatments in the context of this disease, including their activities in glioblastoma stem-like cells (GSCs), a small subpopulation able to drive GBM growth. Additionally, we highlight recent works that approach other classes of chaperones, such as histone and mitochondrial chaperones, as important molecules for GBM aggressiveness. Herein, we provide new insights into how HSPs and their partners play pivotal roles in GBM biology and may open new therapeutic avenues for GBM based on proteostasis machinery.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteínas de Choque Térmico/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Proteínas de Choque Térmico/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular
7.
Front Cell Dev Biol ; 7: 150, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428613

RESUMO

Pluripotency is orchestrated by distinct players and chaperones and their partners have emerged as pivotal molecules in proteostasis control to maintain stemness. The proteostasis network consists of diverse interconnected pathways that function dynamically according to the needs of the cell to quality control and maintain protein homeostasis. The proteostasis machinery of pluripotent stem cells (PSCs) is finely adjusted in response to distinct stimuli during cell fate commitment to determine successful organism development. Growing evidence has shown different classes of chaperones regulating crucial cellular processes in PSCs. Histones chaperones promote proper nucleosome assembly and modulate the epigenetic regulation of factors involved in PSCs' rapid turnover from pluripotency to differentiation. The life cycle of pluripotency proteins from synthesis and folding, transport and degradation is finely regulated by chaperones and co-factors either to maintain the stemness status or to cell fate commitment. Here, we summarize current knowledge of the chaperone network that govern stemness and present the versatile role of chaperones in stem cells resilience. Elucidation of the intricate regulation of pluripotency, dissecting in detail molecular determinants and drivers, is fundamental to understanding the properties of stem cells in order to provide a reliable foundation for biomedical research and regenerative medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...